Do you know why the golden finger need to add the PI stiffener?

Stiffeners are an important element in most flex designs and as such need to be engineered into the design and fully documented in the data set to ensure the form fit and function of the finished flex circuit parts. Some designs may have complex stiffener requirements that may impact the manufacturability of the flex circuits and may create added complexity in the component assembly process. For these designs we recommend that our customers consult with an engineering team to ensure the flex circuit is manufacturable and will meet your requirements.

Several days before, I received an rigid flex pcb inquiry form our customer, required to add a FR4 stiffener for golden finger area to meet the total thickness 0.3mm. Attached the picture as below, please kindly check it.

Rigid flex pcb add stiffener for golden finger area Gerber file picture

Do you know it is not available to add a FR4 stiffener for golden finger area? Because of  the FR4 stiffener is too hard, it will be bad for golder finger connector to a ZIP( Zero Inserion Force). Because the FR4 stiffener tolerance is bigger than PI stiffener, if the stiffener thickness it a bit of big or small. It will be very easy to lead to the golden finger is not contact well and maybe because of it’s too loose to fall out. Or it is not able to insert to the connector due to it is too thick.

Normally, we usually to use make it as 0.2mm,0.3mm,0.5mm(FPC+PI stiffener) for golden finger area. Attached one of our FPC +PI stiffener for golden finger picture for your reference, please kindly check it. Are you have similar design? It is 2layer red oil flex pcb. 1/2oz copper, 1mil PI, red solder mask instead of coverlay, board thickness 0.14mm, ENIG1u’’, minimum copper plated 25um, white silk screen, 3M467 tape on bottom side. Add the PI stiffener on the golden finger area to meet 0.3mm total thickness.

FPC+PI stiffener for golden finger area to meet 0.3mm total thickness

By the way, are you have any trouble in sourcing the connector for match the FPC golder finger? If yes, pleas also feel free to contact us. We can according to your gerber file to advise the right connector part number for you. If you would like to learn more details, please free to contact us by e-mail sales@bestfpc.com.

You may also like

What we do to meet your impedance control?

Have you designed the flex pcb or rigid flex required the impedance control? Recently, there are more and more customers are required the impedance controlled circuits throughout the industry in a wide range of applications. And also need a minimum bend radius. It gives a big change to improve our production capability.

Attached a picture for 7 layers HDI rigid flex pcb and impedance control required picture for your reference, please kindly have a look at it.

Rigid flex with impedance control

Line widths and spacing, and the copper thickness of the flex layers interact to achieve the impedance values required. Normally, we will adjust the trace spacing and width to meet our customers impedance control requirements. Thinner copper allows for a thinner line width/spacing and a thinner flex core thickness. This results in a thinner flex area, which will have the highest degree of flexibility and the tightest min. bend capability. The minimum trace width and spacing we can make is 2/2 mil for flex pcb. If the customers are required 2/2mil trace width and spacing, we will use 1/3 oz Cu. The following are typical line width and spacing for the more common impedance values when using 1/2 OZ copper:

50 Ohm Single Ended: 0.004” line.

90 Ohm Differential Pair: 0.004” line/0.0055” spacing.

100 Ohm Differential Pair: 0.004” line/0.006” spacing.

120 Ohm Differential Pair: 0.0037” line/0.0075” spacing.

If 1 OZ copper is required, usually due to a higher current carrying requirement on non-impedance lines, the above line widths are not valid as a 0.004” line width is below the manufactured limit of 1 OZ copper. This requires the line widths/spacing as well as the flex core thickness to increase, which negatively impacts flexibility.

Polymide flex materials are very well suited for impedance-controlled designs. The material is homogenous, has a low DK (3.2-3.4), is very uniform, and has tightly controlled thickness. And we usually use the polymide base material and coverlay to start production. There are many factors will affect the impedance control.

If you would like to learn more details,please feel free contact us at sales@bestfpc.com. We have impedance control tester in our factory. And we can calculate the impedance control details for you for free.

Impedance control tester

You may also like

How to avoid fake exposed copper for Flex-Rigid PCB?

Did you meet the situation? When your Flex-Rigid PCB product produced, but PCB vias has fake exposed copper phenomenon, which might caused worse problem. (Such as below picture show)

Detailed picture for fake exposed copper

Today we’ll share some info with you, wish it can be helpful to know more about it.

Why fake exposed copper happens? There are two main reasons:

  1. Reason one: Just use screen to plug via holes in the solder mask process(have not used aluminum pluged), which caused the solder mask poor in via holes and the hole edge have fake exposed copper.

2) Reason two: When the boards printed not so well on first time, need to be washed and perform a second printing. If the solder mask in holes didn’t clear up, it will cause the solder mask cannot plug through the holes, plug holes not full, then fake exposed copper occurs.

fake exposed copper

How to improve this situation?

1) Suggestion one: Plug vias with resin, and then do the solder mask. It can avoid fake exposed copper.

2) Suggestion two: Can considering change the stack up, such as change 4 layer flex-rigid PCB(1L PCB + 2L FPC + 1L PCB), replace the TOP/Bottom PCB layer with FPC. And use coverlay, the coverlay can cover the vias, which can help solve this problem.

If you have any further question, pls feel free to contact us.

You may also like

What do you know about the connection ways of PCB panel?

As we all known, some customer need to do following assembly in their side when received the bare boards. In order to facilitate customers for subsequent assembly, we’ll ship out boards in panels. So, what’s the difference between FPC and PCB paneling connection mode?

  1. For FPC , we often use connecting tabs to connect the boards. 
FPC connecting tabs
  • For Rigid PCB, we often use V-cut and connecting tabs(with stamp holes) to connect the boards.
PCB V-cut
  • For Rigid-flex PCB, we’ll use connecting tabs(without stamp holes) in flex part, and use connecting tabs(with stamp holes) in Rigid part.
connecting tabs(with and without stamp holes)

Take the Rigid-flex PCB for example, if the boards are easy to fallen from panels when do assemble, how to improve the design?

There are two direction we can go, one solution is add more connecting tabs in paneling, another solution is broaden the width of connecting tabs.

Hope our suggestion are helpful for you. If any further question want to discuss with us, pls feel free to contact us at sales@bestfpc.com.

You may also like

Why the FPC or rigid flex add the EMI shield?

Do you know what is the EMI shield? Do you know what is the EMI shield used for  and what kind of products need to add the EMI shield? Today let’s know why the FPC or rigid flex add the EMI shield together.

What’s EMI?

When your flexible PCB or rigid-flex PCB application requires limits in electromagnetic and /or electrostatic interference, EMI shielding should be applied.

Electromagnetic interference (EMI) also called radio-frequency interference (RFI), when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade and effect the performance of the circuit or even do not get work. EMI is caused by electrical pulsing.

Whats is our EMI shield?

With EMI shielding film design, the Flexible PCB has best flexibility as well as the thinnest overall thickness. Compared to silver ink printing and copper layer design, the flex circuit cost will be lower, and the shielding capability will be in a higher degree. No need extra shielding material, like metal cover. EMI shielding film such as Tatsuta can replace the copper layer design, then to save cost without compromising on the flexibility of the board.

EMI consists of an additional layer of selectively specialized laminate on the surface of the coverlays. It has 3-layer construction consisting of an electrically conductive adhesive, a reinforced layer and an insulation layer. The insulation layer is black in color as well as friction resistant. The EMI shielding film is laminated under heat and pressure. The conductive adhesive flows into the coverlay opening which then adhere and electrically connects to the ground. Attached the EMI shield stack up for your reference, hope it will be helpful to you.

EMI shield

The normally used EMI shield is TSS200 from Toyochem. The thickness is 200um. It has the excellent flexibility, electrical conductive reliability, chemical resistance, non-Halogene and UL type. If you would like to learn more details, please contact with me.(sales@bestfpc.com), we will be very glad to share the TS 200 EMI shield specification with you. Attached some of our FPC and Rigid flex with EMI shield for your reference, hope you will be interested in.

Rigid-flex pcb with EMI shield
FPC with EMI shield

EMI Shielding application filed

Our EMI shield required customers are mainly specialize in wireless communication, 5G phone, radar, drone, camera and new energy automobile. EMI shield is becoming more and more popular in the designs of flexible printed circuit and rigid-flex printed circuit board. Many flexible PCB or Rigid-flex circuits are sensitive to either absorbing or emitting EMI. If EMI shield is out of control, it can negatively impact the performance of the design and or effect the circuit function.

You may also like

How much do you learn about the loose-leaf rigid flex PCB?

Have you seen loose-leaf (layered) rigid-flex PCB? One end of the multiple flexible boards is fixedly connected to the main rigid board, each flexible PCB will laminate to a fixed connection of rigid part.

Each flexible circuit has a free end, and each flex board can be bent freely, which improves the bending performance of the multilayer PCB. The flex parts can be respectively bent to the required angular positions so that the layered rigid PCB can be connected with components at different angles and different spatial positions.

loose-leaf (layered) rigid-flex PCB

Many FPC have a limited bending radius, flex thickness & width and amount of copper will affect flexibility and bend radius. The loose-leaf approach does allow going below the minimum recommended bend radius. Separating the layers into single flexible printed circuit board within the stack up allows the minimum bend radius to be calculated based on the thickness of the individual layers. But the length of each single flex circuit is made somewhat longer than the one below it, it allows room for all flex parts to bend without undue stress to itself or to the layer immediately adjacent to it.

Best Technology is mainly manufacture FPC board and flex-rigid PCB boards. Below is a ten layers flex rigid PCB with eight different golden fingers sample picture for your reference.

loose-leaf (layered) rigid-flex PCB
loose-leaf (layered) rigid-flex PCB stack up

If you are interested in this designs, please feel free to contact us to know more details at sales@bestfpc.com

You may also like