Flex Circuit Specific Terms and Definitions

Recently, I was having a few discussions with someone very new to flex design. I was trying to be helpful and going through several things that are specific to flex and rigid flex design which should be considered as you start your first design. So, this blog is written for those of you who are new to flex and rigid flex, and may be unfamiliar with some of the terms that get volleyed around in conversation.

Flexible Circuit(flex pcb, pcb flex, flexible pcb, flex circuits):  

A pattern of conductive traces bonded on a flexible substrate. There are several different substrates available, the most common being polyimide. Different than rigid materials, these laminates will have rolled annealed (RA) copper for improved flexibility.

flex pcb
flex pcb

Rigid-Flex PCB(rigid flexible pcb):  

This is a hybrid construction, using flex materials in areas that need to bend or flex and rigid materials in areas with dense component areas, surface mount components on both sides of the PCB, and applications with higher layer count, dense routing areas.  Most common rigid materials can be incorporated into a rigid flex construction.

rigid flex pcb
rigid flex pcb

Flex Tails:  

Typically refers to the areas of flex extended out past the rigid portions of the rigid flex. This may be one flex region, or several bands of flex areas that extend in various directions. Rigid flex is often used to solve packaging issues and connect on multiple planes. Flex tails enable this.

Banding:  

Often used to accommodate a shorter flexible area if there is no room for a service loop. Instead of using the full width of the flex region between areas for each inner layer, the area can be divided into smaller bands of equal width for each inner layer, eliminating buckling and stress in that area.                                                                   

Pouch:  

This is a protective barrier material often used in rigid-flex fabrication. Often, this is a coverlay material used to protect exposed flexible materials during processing and is removed from the flexible portion of the board before shipment.

Coverlay:  

A layer of insulating material applied to the flexible circuit to insulate the conductor pattern. Coverlay is typically a layer of polyimide with acrylic adhesive. Film based coverlay is much more flexible than cover-coat materials and highly recommended for dynamically flexing applications or flex that will have a tight bend radius. It is important to be sure to spec enough adhesive to fully encapsulate the copper conductors.

Bend Radius:  

This is the ratio of the bending radius measured to the inside of the bend to the overall thickness in that area.  Typically, recommendations for non-dynamically flexing designs is 10:1 for single and double-sided construction, and 20:1 for multilayer construction. These can be exceeded but should be evaluated carefully. Dynamically flexing applications should be discussed with your fabricator for a recommended stack up.

I always wrote a blog about how to calculate the bending radius of fpc.

Button Plate:  

Fabrication process to selectively electroplate copper to vias and onto the pads capturing the vias. The remaining copper traces do not have electrodeposited copper, increasing the flexibility of the circuit.

I-Beam Effect:  

Stacking conductors on adjacent layers directly on top of one another, increasing the stiffness of the circuit in the bend or fold areas. Staggered conductors are recommended if possible, to retain the maximum flexibility of the circuit.

I hope this helps explain some of the common terminology with flex and rigid-flex materials and design. Please reach out to me with any questions for further information!

Copper Thickness Requirements for Flex Circuits

If an end user will specify the copper thickness of a printed circuit, there must be many reasons. For example, current carrying capacity, but copper thickness also directly impacts thermal performance and impedance. All these are vital properties, which have a great influence on the functionality and reliability of a flexible circuit.

flexible circuits
flexible circuits

At the point, it is important to understand the functional needs driving a copper thickness requirement.

Some of the common functional requirements could be:

1.Minimum thickness in a connector area to assure robust contact.

2.Adequate current carrying capacity directly related to the cross sectional area of the trace.

3.Proper conductivity, a function of cross sectional area and metal type of the trace.

4.Proper impedance in high speed circuits driven by the cross sectional area of the copper, the surrounding dielectric constant, and distance from signal trace to ground plane.

5.Thermal properties directly related to metal type and trace profile.

Copper weight is used in the industry as a “thickness” measurement. Circuit manufacturers commonly purchase copper foil with descriptions of ½ ounce, 1 ounce, 2 ounce and so on. The number is the weight of copper in a square foot of foil. Also, +/- 10% is the industry accepted tolerance for copper foil thickness from the material supplier.

flexible pcb
flexible pcb

Drawing specifications will frequently define a flexible PCB copper thickness using weight. For example “circuit to be 1 ounce copper”. This can lead to some ambiguity, as copper plating on double sided circuits can easily add an ounce of copper to the surface of a trace. So by specifying thickness in this fashion, it is not clear if this is intended as a finished thickness or an original thickness. Additionally, controlled impedance designs work best when copper plating is restricted to the vias with no copper plated on the surface of the traces. This will minimize trace thickness variability and suggests a specific product category requiring a process known as “Pads Only Plating” or “Button Plating”. For controlled impedance designs, one of these terms should be called out in the drawing notes.

What affects final copper thickness is the variety of manufacturing processes that add or subtract copper thickness. Micro-etching is a common “cleaning” process used to prepare a surface for plating or coating. This process removes a small amount of copper. Likewise copper plating will add thickness. The circuit fabricator will directly measure added (or subtracted) thickness in mils (1 mil =.001”) or microns (25 Îźm=.001”).

The most accurate method for determining thickness is to do a micro section. This is a destructive test, so it is common to use coupons located in unused areas of the processing panel. These coupons are located and sized to be “representative” of the circuitry copper thickness. Copper thicknesses will vary slightly across a panel depending on current density from electroplating. Current density can be a function of the copper trace pattern so differences among various part numbers will occur. As a general rule, copper plating thickness will tend to be thinner on the outer edges of the panel and thicker toward the center.

In summary, when defining the specific copper thickness for an application it is highly recommended to start with a discussion of the myriad functional requirements. Also, the manufacturer can help recommend copper thicknesses and tolerances as well as the best methods for measurement.

Best Technology is the professional vendor of flex circuits, from 1 layer to 10 layers, 2 layers rigid-flex circuits to 16 layers rigid-flex circuits, and one-stop service including components purchasing, assembly, IC programming, testing. Choose us, you can always enjoy our best service at a good price.

Rigid vs Flexible PCBs: Which One is the Best for Your Next Project?

Speaking of “PCB”, many people will think of a rigid PCB. However, the term “PCB” can refer to either a rigid PCB or a flexible PCB. Flexible PCBs are more commonly known as flex circuits(flex boards, flexible circuit boards, flexible printed circuit boards and flexible electronics). Recently, Flex circuits are highly welcome in the market since they can be bent or twisted. However, in the most basic sense, rigid PCBs and flexible PCBs have the same ultimate function of connecting various electrical and mechanical components together.

When to Use Rigid and When to Use Flexible

Rigid PCBs typically cost less than flex circuits as flex circuits may eliminate the need for components such as connectors, wire harnesses, and other circuit boards. By removing these components from a design, material cost, labor and assembly cost are all reduced.

flexible pcb

flexible pcb

Many electronic devices (laptop and desktop computers, audio keyboards, solid-state drives, flat-screen TVs and monitors, children’s toys, and various electronic gadgets) employ rigid PCBs instead of flexible PCBs. However, flex circuits may be found in ultra-compact and/or high-performance devices, including GPS units, tablet PCs, smart phones, cameras, and wearables. Flex circuit makes installation get much easier.

Finally, a flex circuit and a rigid circuit can be used together—as a rigid flex PCB(Rigid flex circuit)—if necessary. The proper application of rigid flex circuit offers optimum solutions for difficult, limited space conditions.

Rigid flex pcb

Rigid flex pcb

Should you have any other queries about flexible pcb, rigid pcb, rigid flex pcb, feel free to contact us. Our sales representative will reply you at our earliest convenience.